The paper on an arithmetization of Yablo's paradox with provability instead of truth, written jointly with Cezary Cieśliński is now available (open access) in its final form published in the Journal of Philosophical Logic.

**Abstract:**We investigate what happens when ‘truth’ is replaced with ‘provability’ in Yablo’s paradox. By diagonalization, appropriate sequences of sentences can be constructed. Such sequences contain no sentence decided by the background consistent and sufficiently strong arithmetical theory. If the provability predicate satisfies the derivability conditions, each such sentence is provably equivalent to the consistency statement and to the Gödel sentence. Thus each two such sentences are provably equivalent to each other. The same holds for the arithmetization of the existential Yablo paradox. We also look at a formulation which employs Rosser’s provability predicate.

## Comments